19 research outputs found

    Accelerating Climate-Mitigating Technology Development and Deployment

    Get PDF
    Policymakers and investors alike covet better information about the risks and potential of early-stage technologies. The motivation for the workshop on accelerating climate-mitigating technology development and deployment was to explore how different perspectives from the policy, analysis, and investor communities involved in clean energy innovation may be combined for more effective decision making.Global Sustainability Initiativ

    Regional Clean Energy Innovation

    Get PDF
    This report provides data-driven approaches and insights for federal and state planning to accelerate clean energy innovation by aligning programs with regional resources and economic development goals.Energy Futures Initiative and University of Maryland Global Sustainability Initiativ

    Towards silicon quantum dot solar cells : comparing morphological properties and conduction phenomena in Si quantum dot single layers and multilayers

    No full text
    Quantum confined silicon, in the form of silicon quantum dots of diameters 5 nm or less, has the property of bandgap control and light emission. This bandgap engineering gives silicon quantum dots applications in novel photovoltaic devices, while maintaining compatibility with existing silicon technologies. These dots can help reduce lattice thermalisation losses in a single-junction solar cell. This work focusses on the large scale fabrication of silicon quantum dots in SiO2 using Plasma Enhanced Chemical Vapour Deposition (PECVD), followed by high-temperature annealing. Thick single layers are compared with multilayers for morphological, electrical and optical properties. Devices with these layers are compared with different electrode materials. Film thickness dependent organization of dots is observed in thick single layer structures which demonstrate improved electrical conductivity, but poor optical response. Multilayer films demonstrate augmented and controlled Si bandgaps and improved absorption in the blue-green visible range, accompanied by poor electrical conductivity. The improved optical properties are a promising sign for any potential photovoltaic integration.Le confinement quantique dans le silicium, sous forme de boîtes quantiques de silicium de diamètre 5 nm, permet de contrôler le bandgap et donc l'émission de lumière. Cette ingénierie du bandgap des nanocristaux de silicium est utile pour les applications photovoltaïques avancées et présente l'avantage de conserver la compatibilité avec les technologies silicium existantes. Ces boîtes quantiques peuvent aider à réduire les pertes par thermalisation dans une cellule solaire homo-jonction. Ce travail se concentre sur la fabrication à grande échelle des nanocristaux de silicium dans SiO2 en utilisant le Dépôt Chimique en Phase Vapeur assisté par Plasma (PECVD), suivi d'un recuit à haute température. Des monocouches sont comparées avec des multicouches pour les propriétés morphologiques, électriques et optiques et des dispositifs avec ces différents couches sont comparés. Dans le cas d'une structure monocouche, l'épaisseur de la couche contrôle l'organisation des nanocristaux et permet de mettre en évidence l'amélioration de la conductivité électrique, avec cependant une réponse optique faible. Les multicouches montrent un bandgap du Si augmentée et controlee, avec une meilleure absorption dans la gamme bleu-vert visible, accompagnée d'une conductivité électrique faible. L'amélioration de ces propriétés optiques est un signe prometteur pour une potentielle intégration photovoltaïque

    Towards silicon quantum dot solar cells (comparing morphological properties and conduction phenomena in Si quantum dot single layers and multilayers)

    No full text
    Le confinement quantique dans le silicium, sous forme de boîtes quantiques de silicium de diamètre 5 nm, permet de contrôler le bandgap et donc l'émission de lumière. Cette ingénierie du bandgap des nanocristaux de silicium est utile pour les applications photovoltaïques avancées et présente l'avantage de conserver la compatibilite avec les technologies silicium existantes. Ces boîtes quantiques peuvent aider à réduire les pertes par thermalisation dans une cellule solaire homo-jonction. Ce travail se concentre sur la fabrication à grande échelle des nanocristaux de silicium dans SiO2 en utilisant le Dépôt Chimique en Phase Vapeur assisté par Plasma (PECVD), suivi d'un recuit à haute température. Des monocouches sont comparées avec des multicouches pour les propriétés morphologiques, électriques et optiques et des dispositifs avec ces différents couches sont comparés. Dans le cas d'une structure monocouche, l'épaisseur de la couche contrôle l'organisation des nanocristaux et permet de mettre en évidence l'amélioration de la conductivité électrique, avec cependant une réponse optique faible. Les multicouches montrent un bandgap du Si augmentée et controlee, avec une meilleure absorption dans la gamme bleu-vert visible, accompagnée d'une conductivité électrique faible. L'amélioration de ces propriétés optiques est un signe prometteur pour une potentielle intégration photovoltaïque.Quantum confined silicon, in the form of silicon quantum dots of diameters 5 nm or less, has the property of bandgap control and light emission. This bandgap engineering gives silicon quantum dots applications in novel photovoltaic devices, while maintaining compatibility with existing silicon technologies. These dots can help reduce lattice thermalisation losses in a single-junction solar cell. This work focusses on the large scale fabrication of silicon quantum dots in SiO2 using Plasma Enhanced Chemical Vapour Deposition (PECVD), followed by high-temperature annealing. Thick single layers are compared with multilayers for morphological, electrical and optical properties. Devices with these layers are compared with different electrode materials. Film thickness dependent organization of dots is observed in thick single layer structures which demonstrate improved electrical conductivity, but poor optical response. Multilayer films demonstrate augmented and controlled Si bandgaps and improved absorption in the blue-green visible range, accompanied by poor electrical conductivity. The improved optical properties are a promising sign for any potential photovoltaic integration.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF
    corecore